Multiplex Photoluminescent Silicon Nanoprobe for Diagnostic Bioimaging and Intracellular Analysis
نویسندگان
چکیده
Herein, a label-free multiplex photoluminescent silicon nanoprobe (PLSN-probe) is introduced as a potential substitute for quantum dots (QDs) in bioimaging. An inherently non-photoluminescent silicon substrate is altered to create the PLSN-probe, to overcome the major drawbacks of presently available QDs. Additionally, crystallinity alterations of the multiplane crystalline PLSN-probes lead to broad absorption and multiplex fluorescence emissions, which are attributed to the simultaneous existence of multiple crystal planes. The PLSN-probe not only demonstrates unique optical properties that can be exploited for bioimaging but also exhibits cell-selective uptake that allows the differentiation and diagnosis of HeLa and fibroblast cells. Moreover, multiplex emissions of the PLSN-probe illuminate different organelles such as the nucleus, nucleolemma, and cytoskeleton, depending on size-based preferential uptake by the cell organs. This in vitro study reveals that cancerous HeLa cells have a higher propensity for taking up the PLSN-probe compared to fibroblast cells, allowing the diagnosis of cancerous HeLa cells. Additionally, the fluorescence intensity per unit area of the cell is found to be a reliable means for distinguishing between dead and healthy cells. It is anticipated that the multifunctionality of the PLSN-probes will lead to better insight into the use of such probes for bioimaging and diagnosis applications.
منابع مشابه
A Phosphorescent Iridium(III) Complex‐Modified Nanoprobe for Hypoxia Bioimaging Via Time‐Resolved Luminescence Microscopy
Oxygen plays a crucial role in many biological processes. Accurate monitoring of oxygen level is important for diagnosis and treatment of diseases. Autofluorescence is an unavoidable interference in luminescent bioimaging, so that an amount of research work has been devoted to reducing background autofluorescence. Herein, a phosphorescent iridium(III) complex-modified nanoprobe is developed, wh...
متن کاملThe effect of graphite sources on preparation of Photoluminescent graphene nano-sheets for biomedical imaging
Objective(s): Graphene as two-dimensional (2D) materials have attracted wide attention in different fields such as biomedical imaging. Ultra-small graphene nano-sheets (UGNSs) have been designated as low dimensional graphene sheets with lateral dimensions less than few nanometres (≤ 500 nm) in one, two or few layers. Several studies have proven that the process of acidic exfoliation and oxidati...
متن کاملCore-shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application.
Recent advances within materials science and its interdisciplinary applications in biomedicine have emphasized the potential of using a single multifunctional composite material for concurrent drug delivery and biomedical imaging. Here we present a novel composite material consisting of a photoluminescent nanodiamond (ND) core with a porous silica (SiO2) shell. This novel multifunctional probe ...
متن کاملMulti-photon imaging of amine-functionalized silica nanoparticles.
A convenient and simple strategy for preparing water soluble, photoluminescent functionalized silica nanoparticles (M-dots) in the absence of fluorophores or metal doping is demonstrated. These M-dots can be used for bioimaging using one and two-photon microscopy. Because of their high photostability, low toxicity and high biocompatibility compared with Lumidot™ CdSe/ZnS quantum dots, functiona...
متن کاملFluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging.
A kind of fluorescent/phosphorescent dual-emissive conjugated polyelectrolyte has been prepared by introducing phosphorescent platinum(ii) porphyrin (O2-sensitive) into a fluorene-based conjugated polyelectrolyte (O2-insensitive), which can form ultrasmall conjugated polymer dots (FP-Pdots) in the phosphate buffer solution (PBS) via self-assembly caused by their amphiphilic structures with hydr...
متن کامل